
Raspberry Pi 12-24V interface HAT

Preparations
This Raspberry Pi interface HAT is using several GPIO pins and an I²C device with a fixed address.

To ensure that this device will work for your system, make sure that these do not clash with GPIO

and I²C devices that are already in use.

Used GPIO pins
Purpose Direction GPIO header pin no. BCM GPIO no. WiringPi no.

Digital outputs OUTPUT 7,29,31,36,11,12 4-6, 16-18 7,21,22,27,0,1

Digital inputs INPUT 15,16,18,22,37,13 22-27 3,4,5,6,25,2

Analog convert alert INPUT 26 7 11

Used I²C addresses
Purpose Address Device

4x Analog input 0x48 ADS1115

Installation
The Raspberry Pi 12-24V interface HAT is equipped with a 40p header, which means that you can

place this on top of your Raspberry Pi.

After having added the interface HAT you can enable the ADS1115 analog inputs in the config file

(/boot/config.txt) by adding the following under the [all] section

dtoverlay=ads1115

dtparam=cha_enable

dtparam=chb_enable

dtparam=chc_enable

dtparam=chd_enable

For more information refer to https://github.com/raspberrypi/linux/blob/rpi-

4.9.y/arch/arm/boot/dts/overlays/README#L210

Make sure you have enabled the I2C interface on your Raspberry using raspi-config (see

https://www.raspberrypi.org/documentation/configuration/raspi-config.md for more information).

After a reboot you will find the device file entries in the folder /sys/bus/i2c/devices under a

new created folder for the ADS1115 device. For example, a folder named 1-0048 in which you will

find a file called ‘name’. Check the contents of this file (using cat name) to make sure it is related

to the ADS1115.

Drivers
No specific drivers are required for this HAT as uses the standard GPIO pins.

When not using the ADS1115 as described above, please use either standard python libraries to read

the analog inputs or standard I²C drivers (for example https://github.com/vincentrou/ads1115_lib).

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://github.com/raspberrypi/linux/blob/rpi-4.9.y/arch/arm/boot/dts/overlays/README#L210
https://github.com/raspberrypi/linux/blob/rpi-4.9.y/arch/arm/boot/dts/overlays/README#L210
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
https://github.com/vincentrou/ads1115_lib

Python Code example:

import ADS1115

import time

import os

from gpiozero import DigitalOutputDevice, DigitalInputDevice

ads = ADS1115.ADS1115()

INPUTS

I22 = DigitalInputDevice(22)

I23 = DigitalInputDevice(23)

I24 = DigitalInputDevice(24)

I25 = DigitalInputDevice(25)

I26 = DigitalInputDevice(26)

I27 = DigitalInputDevice(27)

OUTPUTS

O4 = DigitalOutputDevice(4)

O5 = DigitalOutputDevice(5)

O6 = DigitalOutputDevice(6)

O16 = DigitalOutputDevice(16)

O17 = DigitalOutputDevice(17)

O18 = DigitalOutputDevice(18)

I22.when_activated = O4.on

I22.when_deactivated = O4.off

I23.when_activated = O5.on

I23.when_deactivated = O5.off

O6.blink(0.5, 1)

time.sleep(0.2)

O16.blink(0.5, 1)

time.sleep(0.2)

O17.blink(0.5, 1)

time.sleep(0.2)

O18.blink(0.5, 1)

print("\033[?25l")

os.system('clear')

while True:

 print("\033[0;0H")

 print("AN0 = {:.0f} mV ".format(ads.readADCSingleEnded(0) * 2.5))

 print("AN1 = {:.0f} mV ".format(ads.readADCSingleEnded(1) * 4.9))

 print("AN2 = {:.0f} mV ".format(ads.readADCSingleEnded(2) * 2.5))

 print("AN3 = {:.0f} mV ".format(ads.readADCSingleEnded(3) * 4.9))

 I0 = I22.value

 I1 = I23.value

 I2 = I24.value

 I3 = I25.value

 I4 = I26.value

 I5 = I27.value

 print("I0 = {:d}".format(I0))

 print("I1 = {:d}".format(I1))

 print("I2 = {:d}".format(I2))

 print("I3 = {:d}".format(I3))

 print("I4 = {:d}".format(I4))

 print("I5 = {:d}".format(I5))

 print("O0 = {:d}".format(O4.value))

 print("O1 = {:d}".format(O5.value))

 print("O2 = {:d}".format(O6.value))

 print("O3 = {:d}".format(O16.value))

 print("O4 = {:d}".format(O17.value))

 print("O5 = {:d}".format(O18.value))

